Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy : TERAHERTZ NANOTECHNOLOGY

Identifieur interne : 000D72 ( Main/Repository ); précédent : 000D71; suivant : 000D73

Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy : TERAHERTZ NANOTECHNOLOGY

Auteurs : RBID : Pascal:13-0208779

Descripteurs français

English descriptors

Abstract

We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm2 V-1 s-1, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s-1. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 105 cm s-1. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0208779

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy : TERAHERTZ NANOTECHNOLOGY</title>
<author>
<name sortKey="Joyce, Hannah J" uniqKey="Joyce H">Hannah J. Joyce</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PU</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Docherty, Callum J" uniqKey="Docherty C">Callum J. Docherty</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PU</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name>QIANG GAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoe Tan, H" uniqKey="Hoe Tan H">H. Hoe Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, Chennupati" uniqKey="Jagadish C">Chennupati Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lloyd Hughes, James" uniqKey="Lloyd Hughes J">James Lloyd-Hughes</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PU</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Herz, Laura M" uniqKey="Herz L">Laura M. Herz</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PU</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Michael B" uniqKey="Johnston M">Michael B. Johnston</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PU</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0208779</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0208779 INIST</idno>
<idno type="RBID">Pascal:13-0208779</idno>
<idno type="wicri:Area/Main/Corpus">000C23</idno>
<idno type="wicri:Area/Main/Repository">000D72</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier lifetime</term>
<term>Carrier mobility</term>
<term>Comparative study</term>
<term>Doping</term>
<term>Electrical properties</term>
<term>Electron mobility</term>
<term>Electronic properties</term>
<term>Field effect transistors</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Photovoltaic cell</term>
<term>Surface plasmons</term>
<term>Surface recombination</term>
<term>THz range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électronique</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure d'indium</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Domaine fréquence THz</term>
<term>Etude comparative</term>
<term>Propriété électrique</term>
<term>Durée vie porteur charge</term>
<term>Recombinaison superficielle</term>
<term>Mobilité porteur charge</term>
<term>Dopage</term>
<term>Plasmon surface</term>
<term>Mobilité électron</term>
<term>Transistor effet champ</term>
<term>Dispositif photovoltaïque</term>
<term>Dispositif optoélectronique</term>
<term>InP</term>
<term>7321</term>
<term>8107V</term>
<term>8107B</term>
<term>7320M</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s
<sup>-1</sup>
. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10
<sup>5</sup>
cm s
<sup>-1</sup>
. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy : TERAHERTZ NANOTECHNOLOGY</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JOYCE (Hannah J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DOCHERTY (Callum J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>QIANG GAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOE TAN (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JAGADISH (Chennupati)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LLOYD-HUGHES (James)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HERZ (Laura M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JOHNSTON (Michael B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Oxford, Clarendon Laboratory</s1>
<s2>Oxford OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>214006.1-214006.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000174786870060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0208779</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s
<sup>-1</sup>
. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10
<sup>5</sup>
cm s
<sup>-1</sup>
. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>THz range</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Recombinaison superficielle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Surface recombination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Plasmon surface</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface plasmons</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>7320M</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0208779
   |texte=   Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy : TERAHERTZ NANOTECHNOLOGY
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024